
1. Introduction
The first aimof the thesis is a computer implementationof dynamicmodels of planarmanipulatorswith
single open-loop chains and revolute joints. The secondmain purpose is an execution of various simu-
lation cases of operational space control, while paying special attention to redundant manipulators
with kinematic couplings at joints. What is important, joint coordinates, rigid bodies and frictionless
holonomic constraints are assumed.

2. Articulated-body algorithm in connection with manipulator dynamics
Characteristics of this recursive algorithm
It is an example of propagationmethods in forward dynamics. Mathematical notation of spatial algebra
in the planar case is exploited. Thanks to this, the equation of motion for body Bi in the figure shown
below has simple form: fi = IAi ai + p

A
i , where fi is the force transmitted across joint i; IAi and pAi

are defined to be articulated-body inertia and bias force for Bi in Ai; ai is the resulting acceleration of
bodyBi. The joint i also constraints the transmitted force to satisfyST

i fi = τi, where τi is the generali-
zed force (torque) ofBi. The proper quantities are propagating to neighbouring bodies until the whole
problem is solved. Finally the generalized acceleration q̈i for each bodyBi is known.

The results from implementation of this algorithm are compared with analogous outcome delivered
by a commercial multibody dynamics package. Then quantitiesM , C, G are then calculated from
constructed formulas to obtain equation of motion for manipulator:M(q)q̈ +C(q, q̇)q̇ +G(q) = τ .

Figure: Primary aspects of the articulated-body algorithm: (Le�) the way of defining the articulated bodiesAi,
(Right) the idea of searching for acceleration q̈i corresponding to joint i.NB is the number of rigid bodies.

3. Operational space control in reference to redundant manipulators
The control objectives are transformed from joint to task coordinates, so that the manipulator’s equ-
ation of motion has the following form: fT = Mx(q)ẍ + Cx(q, q̇) + Gx(q), whereMx, Cx, Gx are
received fromM , C,G using Jacobian matrix J = ∂x

∂q
and its derivative J̇ . In the last formula fT is

the operational space force and x = [x1 x2]
T is the task vector, in which x1, x2 are referred to position

of manipulator’s end e�ector. The arbitrary generalized force can be expressed as τ = JTfT +NTτo,
whereτo is its component andNT is thenull spaceprojectionmatrix. In the caseof kinematic couplings
at joints, noted as φφ(q) = 0, mentioned formulas are more complicated. The control law, given by an
expression ẍ = kp(xd − x) + kd(ẋd − ẋ), is related to proportional-derivative (PD) controller. The
quantities xd and ẋd (assumed as ẋd = 0) refer to goal position and velocity, respectively.

D

Figure: Operational space control of 6-DOF planar manipulator with two kinematic couplings φ1, φ2 and desti-
nation pointD. The quantity ex = xd−x is the position control error in time t and q is the vector of generalized
position variables. τo = −kN∇U is chosen to minimize the gravity e�ort, defined asU = ‖G(q)‖2.

Figure: Two interesting cases of control of 6-DOF planar manipulator: (Le�) with the only constraint equation
q2 = 0 and τo = 0, (Right) having assumed φ1, φ2, τo = −kN∇U and 20% uncertainty in mass of bodies.

4. Conclusions
Articulated-body algorithm has convenient form to be rearranged and used in operational space con-
trol, which in case of redundant manipulators enables to achieve goal positions with good accuracy,
despite changes of angles qi. Kinematic couplings at joints reduce variability of qi or even imposemain-
taining constant values (e.g. q2 = 0). Uncertainty in physical data, such asmass of bodies, has negative
influence on control andmakes it more di�icult because of nonzero oscillating position error ex.
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