Bachelor thesis

Modeling and control of redundant manipulators
with kinematic couplings at joints

Szymon Jarocki
Automation and Robotics: Robotics
Academic year 2017/2018

Supervisor: drinz. Pawet Malczyk

1. Introduction

The first aim of the thesis is a computerimplementation of dynamic models of planar manipulators with
single open-loop chains and revolute joints. The second main purpose is an execution of various simu-
lation cases of operational space control, while paying special attention to redundant manipulators
with kinematic couplings at joints. What is important, joint coordinates, rigid bodies and frictionless
holonomic constraints are assumed.

2. Articulated-body algorithm in connection with manipulator dynamics

Characteristics of this recursive algorithm

The results from implementation of this algorithm are compared with analogous outcome delivered
by a commercial multibody dynamics package. Then quantities M, C, G are then calculated from
constructed formulas to obtain equation of motion for manipulator: M (q)g + C(q,q)q + G(q) = 7.

Figure: Primary aspects of the articulated-body algorithm: (Left) the way of defining the articulated bodies A;,
(Right) the idea of searching for acceleration §; corresponding to joint i. Nz is the number of rigid bodies.
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3. Operational space control in reference to redundant manipulators

The control objectives are transformed from joint to task coordinates, so that the manipulator’s equ-
ation of motion has the following form: fr = M,(q)Z + C.(q,q) + G.(q), where M,, C,, G, are
received from M, C, G using Jacobian matrix J = g—fl’ and its derivative J. In the last formula fris
the operational space force and & = [z, x5|" is the task vector, in which z;, x4 are referred to position
of manipulator’s end effector. The arbitrary generalized force can be expressed as ™ = J* fr + N7,
where 7, isits component and N T is the null space projection matrix. In the case of kinematic couplings
at joints, noted as ¢p(q) = 0, mentioned formulas are more complicated. The control law, given by an
expression & = k,(xq — x) + kq(&q4 — ), is related to proportional-derivative (PD) controller. The
quantities x4 and &, (assumed as &, = 0) refer to goal position and velocity, respectively.
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Figure: Operational space control of 6-DOF planar manipulator with two kinematic couplings ¢1, ¢2 and desti-
nation point D. The quantity e, = x4 — x is the position control error in time ¢ and q is the vector of generalized
position variables. T, = —ky VU is chosen to minimize the gravity effort, defined as U = ||G(q)||>.
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Figure: Two interesting cases of control of 6-DOF planar manipulator: (Left) with the only constraint equation
g2 = 0and 7, = 0, (Right) having assumed ¢1, ¢2, T, = —kxn VU and 20% uncertainty in mass of bodies.

4. Conclusions

Articulated-body algorithm has convenient form to be rearranged and used in operational space con-
trol, which in case of redundant manipulators enables to achieve goal positions with good accuracy,
despite changes of angles ¢;. Kinematic couplings at joints reduce variability of ¢; or even impose main-
taining constant values (e.g. ¢o = 0). Uncertainty in physical data, such as mass of bodies, has negative
influence on control and makes it more difficult because of nonzero oscillating position error e,.
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