Master thesis

Optimal control of planar multibody systems using the adjoint method

MichałŁukasiak
Automatics and Robotics
Academic year 2017/2018
Supervisor: dr inż. Paweł Malczyk

1. Introduction

This paper describes optimal control problem of underactuated planar multibody systems (with more degrees of freedom than controls). The author uses the adjoint and Kelley-Bryson methods, that allow to determine the direction of controls' change that should minimize an objective function.
The optimal control problem is transformed to a optimization problem, that is solved iteratively.

2. Models

The author examines two models mostly used in literature - n inverted pendulums connected in a serial chain and a planar crane with a mass hanged with a rope. System with n pendulums is actuated only with force u acting on a trolley. Crane has two generalized forces: the force F acting on a trolley and the momentum M coiling rope on a crank.

Figure 1: Models of planar crane and triple inverted pendulums.

3. Swinging up inverted pendulums

The work deeply describes swinging up problem of a single, triple and four-fold pendulum. Below the objective function of system with four pendulums is shown. The goal is to find u that will minimize:

$$
\begin{equation*}
J=\sum_{i=2}^{5}\left(\varphi_{i}(T)-\pi\right)^{2}+\sum_{i=2}^{5}\left(\omega_{i}(T)\right)^{2} \tag{1}
\end{equation*}
$$

The objective function (1) include angular position and velocities at the final time $T=3 \mathrm{~s}$.

4. The crane trajectory tracking

$$
\begin{equation*}
J=\int_{0}^{3}\left[\left(x_{m}-x_{d}\right)^{2}+\left(y_{m}-y_{d}\right)^{2}\right] d t+\left(x_{m}(3)-5\right)^{2}+\left(y_{m}(3)-1\right)^{2} \tag{2}
\end{equation*}
$$

The objective function (2) represents trajectory tracking problem. The desired trajectory is described by x_{d} and y_{d}. The objective function contains scrap function that is crucial for good convergence of algorithm. The final time is $T=3 \mathrm{~s}$.

5. Conclusions

- The adjoint and Kelley method allow to find optimal control of underactuated system
- The strategy of determining step in each iteration is very important. Large step can omit local minimum, but small one lengthens calculation time
- In this optimization problem local minimums are a serious problem. A step in each iteration must be selected to considered model and used objective function form

